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ABSTRACT
Bilateral bargaining is the most common economic trans-
action. Customarily, it is formulated as a non-cooperative
game with uncertain-information and infinite actions (offers
are real-value). Its automation is a long-standing open prob-
lem in artificial intelligence and no algorithmic methodology
employable regardless of the kind of uncertainty is provided.
In this paper, we provide the first step (with one-sided un-
certainty) of an algorithmic game theory framework to solve
bargaining with any kind of uncertainty. The idea behind
our framework is to reduce, by analytical tools, a bargaining
problem to a finite game and then to compute, by algorith-
mic tools, an equilibrium in this game.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents

General Terms
Algorithms

Keywords
Game theory (cooperative and non-cooperative), Bargaining
and negotiation

1. INTRODUCTION
The automation of economic transactions through negoti-

ating software agents is receiving more and more attention
in the artificial intelligence community. It is common the
idea that autonomous agents can lead to economic contracts
more efficient than those drawn up by humans, saving also
time and resources. In this paper, we focus on the main
bilateral negotiation setting: the bilateral bargaining.

A bargaining situation is characterized by the interaction
of two agents, a buyer and a seller, who can cooperate to
produce a utility surplus by reaching an economic agree-
ment, but they are in conflict on what specific agreement to
reach. This is because agents have conflictual interests. A
bargaining situation is customarily studied by resorting to
game theoretical tools [9], in which each agent is supposed to
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be rational. The most expressive bilateral bargaining model
is the Rubinstein’s alternating-offers [7]. This protocol pre-
scribes that agents act in turns in alternate fashion and each
of them can accept the offer which her opponent made at the
previous turn or make a new offer. The utility of the agents
over the economic agreements depends on some parameters
(i.e., discount factor, deadline, reservation price). In real-
world settings, the values of these parameters are private
information of the agents. Customarily, agents are assumed
to have a probabilistic prior over the values of the opponent.

Solving a bargaining problem means to find the agents’ op-
timal strategies. The alternating-offers is an infinite-horizon
(agents can indefinitely bargain) extensive-form (the game
is sequential) Bayesian (information is uncertain) game and
the number of available actions to each agent is infinite (an
offer is a real value). The appropriate solution concept for
such a class of games is the sequential equilibrium [5]. It
is composed of a belief system, which describes how agents
must update their beliefs during the game, and of strategies,
which prescribe how rational agents must act.

2. STATE OF THE ART
While solving bargaining with complete-information is easy

by using backward induction [9], the study of bargaining
with uncertain-information is an open challenging problem.
No algorithmic methodology discussed in the literature so
far can be applied to this game regardless of the uncertainty
kind (i.e., the uncertain parameters) and degree (i.e., the
possible values that the parameters can assume). Algorith-
mic game theory [9] provides general purpose algorithms to
search for sequential equilibria [6], but they work only on
games with a finite number of actions and they do not pro-
duce belief systems off the equilibrium path. This makes
such algorithms not suitable for bargaining. Several efforts
have been accomplished to extend the backward induction
algorithm [2] to solve games with uncertain-information [3].
The basic idea behind these extensions is to break the cir-
cularity between strategies and belief system by comput-
ing at first the strategies with the initial beliefs and then
deriving the beliefs that are consistent with the strategies.
However, as shown in [4], the solutions produced by these
extensions may not be equilibria, the strategies being not
assured to be sequentially rational given the belief system.
The microeconomic literature provides some analytical re-
sults only for settings without deadlines and with narrow
degrees of uncertainty, e.g., over the discount factor of one
agents with two possible values [8] and over the reservation
price of both agents with two possible values per agent [1]. It
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is worth remarking that a large amount of analytical works
deal with asymmetric bargaining situations where only one
agent makes offer and the other can only accept or reject
offers. Finally, it is worth citing an hybrid approach [4] that
combines analytical results and searching algorithms to solve
the setting in which uncertainty is over the deadline of one
agent with an arbitrary number of possible values. This
algorithm is proved to be sound and complete and is com-
putationally efficient. However, due to the mathematical
machinery it needs to solve a very specific setting of un-
certainty, its extension to capture other uncertainty kinds
appears to be impractical.

3. THE PROPOSED FRAMEWORK
The aim of the present paper is to provide a framework

that can be employed with arbitrary kinds and degrees of
uncertainty. Differently from related works, e.g., [3], that fo-
cus on searching for equilibria in pure strategies and, in the
case there is no pure strategy equilibrium, resort to mixed
strategies, we directly search for equilibria in mixed strate-
gies. This is because bargaining with uncertainty may not
admit any equilibrium in pure strategies, as shown in [4].
The basic idea behind our algorithm is to solve the bargain-
ing problem by reducing it to a finite game deriving equilib-
rium strategies such that on the equilibrium path the agents
can act only a finite set of actions and then by searching for
the agents’ optimal strategies on the path. Our framework
is structured in the following three steps.

● We analytically derive an assessment a = (μ,σ) in
which the randomization probabilities of the agents are
parameters and such that, when the parameters’ val-
ues satisfy some conditions, a is a strong sequential
equilibrium.

● We formulate the problem of finding the values of the
agents’ randomization probabilities in a as the problem
of finding a weak sequential equilibrium in a reduced
bargaining game with finite actions, and we prove that
there always exist values such that a is a strong sequen-
tial equilibrium.

● We develop an algorithm based on support enumera-
tion to compute an equilibrium in the reduced game
and we show that its computational complexity is poly-
nomial in the agents’ deadlines.

We apply our framework to settings with one-sided uncer-
tainty (on one agent) over two possible types.

4. THE TWO-TYPE SETTING
In the setting we are studying, buyer’s types can have dif-

ferent values of reservation prices (denoted by RPb), tem-
poral discount factor (denoted by δb), and temporal dead-
line (denoted by Tb). We call the buyer’s types b1 and b2.
Without loss of generality we assume Tb1 ≤ Tb2 . We call
ι(t) ∶ N → {b, s} the player function returning the agent
that act at t. We build an assessment a such that, on the
equilibrium path, the ι(t)’s offers at t < Tb1 belong to a
finite set X(t) ∶= {x∗bi

(t) ∶ ∀i}, where x∗bi
(t) the ι(t)’s op-

timal offer at t in the corresponding complete-information
game between bi and s. Offering at t any x /∈ X(t) does not
allow ι(t) to improve her expected utility. In Fig. 1 we show
x∗b1
(t)s and x∗b2

(t)s in an example.
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Figure 1: Optimal offers x∗bi
(t)s in the complete in-

formation bargaining games between s and bi.

For each t < Tb1 we rank the values in X(t) in increas-
ing order and we call bs = argmini∈{b1,b2}{x∗i (0)} and bw =
argmaxi∈{b1 ,b2}{x∗i (0)} where w means weak and s means
strong. In Fig. 1 we have bw = b1 and bs = b2. The ad-
jectives ‘strong’ and ‘weak’ refer to the contractual power
of the corresponding buyer’s type: in complete-information
settings the seller’s expected utility is larger when it bar-
gains with bw rather than when it bargains with bs. The
basic idea behind a is that, when agents are forced to make
the offers in X(t), bw can gain utility from disguising her-
self as bs, making the optimal bs’s offers, while bs prefers
to signal her own type, making offers different from the bw’s
ones. That is, bw acts in order to increase her expected util-
ity with respect to the situation where s believes b’s type to
be bw with certainty.
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